
Demystifying the GridBagLayout Layout

Manager

Peter Haggar (IBM Network Computing Software)

April 14, 1999

Abstract

The GridBagLayout layout manager is the most powerful and complex of
the layout managers provided in the Java libraries. Because of its power
and design, it is the most useful layout manager provided. However, due
to the intricate nature of Gridbag, many people are apprehensive to use
it. With the proliferation of visual builder tools available today in the
marketplace, many developers resort to using them to build their complex
interfaces. These tools typically use the GridBagLayout and shield the
developer from having to know the details contained in this paper. It
is fine to use a visual builder tool, but I also think it is very useful to
understand this class and be able to debug the generated code if and
when necessary. This paper will explore this perplexing class and explain
exactly how to use this layout manager to develop custom user interfaces.

1 Introduction

I often refer the GridBagLayout layout manager as “The mother of all layout
managers” due to its complexity. Part of the problem for Java developers us-
ing the GridBagLayout is the lack of good, accurate information on how to use
it. Many resources, frankly, do a very poor job at explaining the details of
GridBagLayout sufficiently for developers to work with it effectively. Taking
advantage of the GridBagLayout is typically necessary to produce anything but
extremely simple graphical user interfaces. My experience has shown when de-
veloping a functional user interface, you will almost always wind up using the
GridBagLayout. The other layout managers, (FlowLayout, BoxLayout, Border-
Layout, CardLayout, GridLayout) although useful, typically are not able to pro-
vide the functionality or flexibility needed to develop a suitable user interface. I
have found that you will use each of the other layout managers by incorporating
them into your GridBagLayout. Therefore, you are not using GridBagLayout at
the expense of the other layout managers, but in addition to them.

This requires you to understand and know how to use all of them. Vari-
ous books usually do a good job of explaining all but the GridBagLayout layout
manager. This paper will attempt to demystify the GridBagLayout layout man-
ager by providing useful and accurate information about how it works and how
to program it.

1



2 THE BASICS 2

2 The Basics

The GridBagLayout lays out its components in a grid. Each component that is
added is associated with an object called the GridBagConstraints object. This
object specifies the size, position, and behavior of the component in the grid.
Before moving on to the details, it is important to first define some terms I
will be using throughout the description of GridBagLayout. It is imperative
to understand these terms and differentiate them from one another in order to
understand how to use GridBagLayout.

2.1 Grid Cells

Grid cells are shown in Figure 1. These are logical cells that the GridBagLayout
layout manager uses when placing components within its grid.

Container

Grid

Figure 1: The basic grid of GridBagLayout

2.2 Component Cells

Component cells are areas of the basic grid which components occupy. Com-
ponent cells can occupy multiple grid cells. These multiple grid cells are called
the component cell and is specified with the GridBagConstraints object, which
we discuss in full detail below. Figure 2 gives the visual representation of com-
ponent cells within a grid.

Figure 2: Component cells within the grid



3 THE GRIDBAGCONSTRAINTS OBJECT 3

2.3 Components Within Component Cells

Figure 3 shows components within component cells within multiple grid cells. It
is important to understand the difference between these three terms as I will be
referring to each (grid cells, component cells, and components) during the rest
of the discussion of GridBagLayout. These details are important as we examine
how to create one of these layouts and get it to look and behave properly.

Component

ComponentComponent

Figure 3: Components within component cells

3 The GridBagConstraints Object

Programming the GridBagLayout requires an in-depth understanding of the
GridBagConstraints class. This class is used to specify many things about the
components in a GridBagLayout. Each component added to a GridBagLayout
must have a corresponding GridBagConstraints object. This object defines,
among other things, the size and position of the component cell, the size of
the component, and how the component behaves in the layout as its container
changes size. The GridBagConstraints object consists of the following fields:

• gridx

• gridy

• gridwidth

• gridheight

• fill

• anchor

• weightx

• weighty

• ipadx

• ipady

• insets



3 THE GRIDBAGCONSTRAINTS OBJECT 4

Let’s examine each one of these separately. As I am explaining each field of
the GridBagConstraints object, I will be referring to grid location, component
cell, and component. See Figures 1, 2, and 3, and the associated discussion of
these terms in The Basics section above if you are not sure of the differences
between them.

3.1 gridx and gridy

These are used to specify the location of the component cell in the grid. You
can specify integer values for gridx and gridy or a predefined constant value
RELATIVE. Integer values denote the starting location for the component cell.
The grid in a GridBagLayout is zero based. The constant value RELATIVE tells
the GridBagLayout to place this component cell just to the right (gridx) or
just below (gridy) the previously added component.

3.2 gridwidth and gridheight

These are used to specify the size of the component cell in the grid. Notice
from Figure 2 that the component cell can cover multiple grid locations. You
can specify integer values or two predefined constant values: RELATIVE and
REMAINDER. The integer values denote the size of the component cell in grid
locations. REMAINDER indicates that this component cell is the last one in its row
(gridwidth) or column (gridheight). RELATIVE indicates that this component
cell is the next to last one in its row (gridwidth) or column (gridheight).

3.3 fill

When a component does not take up all of the space of its component cell, the
fill constraint is used to specify how the component will occupy the extra
space. The valid values for fill and their affect on the component are:

HORIZONTAL The component in the component cell will be sized such that it fully
occupies the width of the component cell. The height of the component
will be the component’s preferred height.

VERTICAL The component in the component cell will be sized such that it fully
occupies the height of the component cell. The width of the component
will be the component’s preferred width.

BOTH The component in the component cell will be sized such that it fully
occupies the width and height of the component cell. The preferred width
and height of the component will be ignored.

NONE The component in the component cell will be sized to be its preferred size.
The GridBagLayout manager will not attempt to fill the component cell
with this component either horizontally or vertically.

3.4 anchor

When a component does not take up all of the space of its component cell, the
anchor constraint is used to specify where the component will be anchored in
the component cell. The valid values for anchor are:



3 THE GRIDBAGCONSTRAINTS OBJECT 5

• CENTER

• NORTH

• NORTHEAST

• EAST

• SOUTHEAST

• SOUTH

• SOUTHWEST

• WEST

• NORTHWEST

The default value is CENTER.
The component cell is logically broken up into nine locations. The nine

anchor constants place the component in one of these locations.

3.5 weightx and weighty

When the container the GridBagLayout is in is sized, weightx and weighty are
used to determine how the extra space will be allocated to the components in the
layout. The value is not a straight percentage. For example, setting the weight
of a component to 50 and two others to 25 will not necessarily result in one
half the space being given to the one component while the other two split the
remainder. The way weight works in a GridBagLayout is fairly straightforward
once you understand what is going on.

When the GridBagLayout layout manager increases or decreases its size
based on the sizing of its container it performs the following calculation:

For each column, the largest weightx for all components in a column is
determined. For purposes of discussion, we will call this columnWeight. Then,
all column weights are totaled for a total weight. We will call this totalWeight.
numPixes refers to the total number of pixels to be added or removed from the
layout. The GridBagLayout layout manager then uses the following formula
to determine the number of pixels(numPixes) to add or subtract to or from a
particular column:

columnWeight ∗ numPixels

totalWeight

The formula for rows is similar. Simply substitute ‘row’ for ‘column’ above.
By default, weightx and weighty have the value 0. When all component’s

weightx and weighty values are 0, no components get any extra space. In
addition, all components are positioned in the GridBagLayout relative to the
center of their container.

One of the things that is tricky about weight in GridBagLayout is that a
component can have a weight of 0, but still change its size. This occurs when
other components in that components row or column have weights other than
0. Remember that the formula for determining how many pixels to apply to



4 CREATING A GRIDBAGLAYOUT 6

each row/column determines a weight for the entire row/colum. Therefore if a
component has a weight of 0, but another component in that same row or column
has a non zero weight, all components in that row/column will be affected.

What happens when a component, which has a weight assigned, is in more
than one row or column? Which row/column does the weight apply to? You
may think that the weight applies to all the rows and columns the component
spans. However, the weight only applies to the last row and the last column the
component occupies. The weight is not a factor in the other rows and columns
the component may occupy.

3.6 ipadx and ipady

These two constrains simply grow the component by the specified amount in
the specified direction. For example, an ipadx of 5 will add five pixels to the
width of the specified component.

3.7 insets

This constraint specifies margins to be added to the inside edge of the compo-
nent’s cell. These are similar to container insets in that components will not
draw on the insets. The use of insets is a way to provide a border around a
component in a GridBagLayout.

4 Creating a GridBagLayout

The listing below shows the code used to create the layout in Figure 3. I’ll use
buttons for the arbitrary components.

class GridBagTest extends Frame
{

private Button b1 = new Button("b1");
private Button b2 = new Button("b2");
private Button b3 = new Button("b3");

public GridBagTest()
{

super();

GridBagLayout gbl = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints(); // 1
setLayout(gbl); // 2

gbc.fill = GridBagConstraints.HORIZONTAL; // 3
addToGridBag(b1, gbl, gbc, 0, 0, 3, 1, 1, 1);

gbc.anchor = GridBagConstraints.WEST;
addToGridBag(b2, gbl, gbc, 2, 2, 2, 1, 1, 1);

gbc.anchor = GridBagConstraints.SOUTHEAST;
gbc.fill = GridBagConstraints.BOTH;



4 CREATING A GRIDBAGLAYOUT 7

addToGridBag(b3, gbl, gbc, 4, 1, 2, 3, 1, 1);

pack();
}

private void addToGridBag(Component c,
GridBagLayout gbl, GridBagConstraints gbc,
int x, int y, int w, int h, int wx, int wy) // 4

{
gbc.gridx = x;
gbc.gridy = y;
gbc.gridwidth = w;
gbc.gridheight = h;
gbc.weightx = wx;
gbc.weighty = wy;
gbl.setConstraints(c, gbc);
add(c);

}

public static void main(String[] args)
{

GridBagTest gbt = new GridBagTest();
gbt.show();

}
}

At // 1 we are creating the GridBagConstraints object we will need. We
can reuse it each time since the object data is copies internally, but remember
to update any constraints the next time you add another component if you want
them to be different. At // 2 we are setting our layout to be the GridBagLayout.
At // 3 and the lines of code following, we are setting some constraints and
then adding the three buttons to the layout. Since there are so many constraints
to set, it is often useful when working with GridBagLayout to create a helper
function as we have done at // 4.

As can be seen, the actual mechanics of getting components displayed in a
GridBagLayout are not too difficult. Understanding what you need to do to get
a proper looking layout can be difficult since you will be mixing the different
constraints.

It is important to remember that the behavior of components in a Grid-
BagLayout change as other components are added with different constraints.
This makes understanding what will happen given a set of constraints fairly dif-
ficult. This is because the constraints for a component in a row/column can af-
fect all of other components in that row/colum. There are two examples of Grid-
BagLayout code at http://www.ibm.com/java/education/javalman/javalman.html
including a program called GridBagLayoutTest.java. This is a program which
helps you understand how all of the different GridBagConstraints work together
and affect one another in a layout. To understand GridBagLayout, I highly rec-
ommend people use and play with this program.

http://www.ibm.com/java/education/javalman/javalman.html


5 TIPS FOR LAYING OUT A GRIDBAGLAYOUT 8

5 Tips for laying out a GridBagLayout

The following are some tips that I have found through my experience with
GridBagLayout to be useful when attempting to code one.

5.1 Draw a Grid

I have found that one of the most useful techniques for creating the code for a
particular view in GridBagLayout is to first draw the layout on paper. Then
draw vertical and horizontal lines between your components. This will give
you a picture of your grid so you know what gridx, gridy, gridwidth, and
gridheight values to use. Figure 4 shows an example of this.

From Figure 4, you can see that it is easy to determine the grid positions
and sizes. I use this technique when designing my own GridBagLayouts. The
following listing contains the Java code that builds and displays the dialog in
Figure 4. It uses the same addToGridBag() method used and defined in the
previous listing.

0 1

Event # rounds

Players Players in Event

2

3 CommitAdd Delete

0

1

Figure 4: Lines drawn through a drawing of a dialog

class SomeDlg extends Dialog...
// Use the GridBagLayout for this dialog.
GridBagLayout gbl = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gbl);

Panel p = new Panel();
p.add(lEvent);
p.add(tfEvent);
p.add(lNumRounds);
p.add(tfNumRounds);

addToGridBag(p, gbl, gbc, 0, 0, 2, 1, 1, 1);
addToGridBag(lPlayers, gbl, gbc, 0, 1, 1, 1, 1, 1);
addToGridBag(lPlayersInEvent, gbl, gbc, 1, 1, 1, 1, 1, 1);



6 SUMMARY 9

addToGridBag(playersList, gbl, gbc, 0, 2, 1, 1, 1, 1);
addToGridBag(playersInEventList, gbl, gbc, 1, 2, 1, 1, 1, 1);

Panel p2 = new Panel();
p2.add(addButton);
p2.add(commitButton);
addToGridBag(p2, gbl, gbc, 0,3, 1, 1, 1, 1);

Panel p3 = new Panel();
p3.add(deleteButton);
addToGridBag(p3, gbl, gbc, 1, 3, 1, 1, 1, 1);

5.2 Start Small

When developing a GridBagLayout it is important to start small and build up.
Don’t write all of the code for the layout and then try to debug it when your
layout doesnt work properly. In addition, I recommend to initially set all weights
to 0, and only modify gridx, gridy, gridwidth, and gridheight. Once you
have your layout looking somewhat like you want should you start modifing the
other GridBagConstraint parameters. GridBagLayout is very complicated and
it is much easier to deal with if you draw a picture of your layout as above,
draw a grid between the items and try to code it to get it on the screen in parts.
Smaller parts are always easier to debug than larger parts.

Be patient when working with the GridBagLayout. It sometimes takes many
tries to get it right. It if very difficult to code one right the first time. The layout
usually requires quite a bit of fiddling to get it to look right.

6 Summary

The GridBagLayout layout manager is the most powerful, yet difficult to use
layout manager provided in Java. Java developers doing any GUI work need
to know how to use this layout manager properly. Many people shy away from
it because of its complexity. I have presented some information that properly
explains all of the GridBagConstraint options and how they work. Hopefully,
this information will save time when developing a GridBagLayout.

7 References

Core Java Cornell, Hortsmann

Graphic Java Geary, McClellan

Java 1.1 Developer’s Handbook Heller, Roberts, Seymour, McGinn

8 About the Author

Peter Haggar is an Advisory Software Engineer with IBM in the Network
Computing Software division in Research Triangle Park, North Carolina.



8 ABOUT THE AUTHOR 10

Peter currently works on emerging Java and Internet technology with a fo-
cus on embedded Java and real-time operating systems. Peter is also writing
a forthcoming book on Java to be published by Addison-Wesley. Peter has
worked for IBM since 1987 and has been working with graphical user inter-
face design and implementation since 1989 and object oriented development
and technology since 1991. For the past 9 years, Peter has worked on multiple
OO and GUI development projects. For 4 years he worked on the IBM Open-
Class C++ class libraries for the VisualAge for C++ product. Before that he
worked on many GUI controls for OS/2. Peter received a B.S. in Computer
Science from Clarkson University in New York in 1987. Peter can be contacted
at <haggar@us.ibm.com>.

mailto:haggar@us.ibm.com

	Introduction
	The Basics
	Grid Cells
	Component Cells
	Components Within Component Cells

	The GridBagConstraints Object
	gridx and gridy
	gridwidth and gridheight
	fill
	anchor
	weightx and weighty
	ipadx and ipady
	insets

	Creating a GridBagLayout
	Tips for laying out a GridBagLayout
	Draw a Grid
	Start Small

	Summary
	References
	About the Author

